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Abstract. We compute the quark–antiquark potential in three-dimensional massive quantum electrody-
namics for an arbitrary fermion mass. The result indicates that screening prevails for any quark masses,
contrary to the classical expectations, generalizing our previous result obtained for large masses. We also
test the validity of several approximation schemes using a detailed numerical analysis. The classical result
is still reproduced for a small separation of the quarks.

1 Introduction

A proper study of the problem of screening and confine-
ment is of considerable importance in our understanding
of gauge theories. To avoid the complexities of four di-
mensions these studies are usually confined to lower di-
mensions. In this framework, a deep physical interpreta-
tion has been achieved. Indeed, in two-dimensional QED
[1], one obtains screening in the massless case, but con-
finement in the massive quark case, realizing the expected
picture.

For QCD in two dimensions Gross et al. [2] were the
first to discuss the subject. If dynamical fermions and test
charges are in different representations, they find screen-
ing or confinement in some particular cases depending on
whether the fermion is massless or massive. A similar con-
clusion in an identical setting has been arrived at for the
massless case in [3]. If, on the other hand, all fermions are
in the fundamental representation, then screening prevails
independently of the quark mass [4].

General inquiries in two-dimensional gauge theories
have been performed recently by several authors [5], con-
cerning the θ -vacuum structure, screening, confinement
and chiral condensates. In three dimensions related ques-
tions were studied in [6].

In three-dimensional space-time, for an abelian gauge
group, the question of screening versus confinement has re-
cently been analysed for large fermion masses [7] in which
case the fermionic determinant can be computed as a se-
ries in the inverse mass. The conclusion was that, con-
trary to classical expectations, the theory is in the screen-
ing phase. Although this is expected from the fact that
a Chern–Simons term develops and there is a topological
mass generation, it is a further indication that the dynam-
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ics of gauge fields and the deep problem of screening versus
confinement is far from being settled by a simple inspec-
tion of the classical behaviour of the theory. In the case
of three-dimensional QED, the outcome reveals that the
vacuum polarization is once more capable of developing
configurations that screen the external quarks, presum-
ably modifying the dynamics of quark–antiquark bound
states.

Here we extend the analysis of our previous work [7] in
order to include all values of the fermion mass parameter.
An explicit expression for the quark–antiquark potential
is obtained following the usual ideas of bosonisation [1,8]
but an analytic form cannot be obtained, and we resort
to the use of numerical analysis. The results show that
the screening phase obtained in the large mass limit [7]
persists for any value of the mass parameter (including
vanishing mass). It may be mentioned that although the
occurrence of a Chern–Simons term in the large mass limit
suggests screening, the absence of such a term for arbitrary
mass clearly implies that the phenomenon of screening is
independent of its presence or absence. Next, the validity
of certain approximation schemes [9] is tested. Using these
approximations a simple form of the quark–antiquark po-
tential can be given, which is compared with the exact
form. We still obtain screening; moreover, the behaviour
of the functions is very accurately described by the pro-
posed approximations.

This paper is divided as follows. In Sect. 2 we present
the computation of the potential and the numerical re-
sults. We draw the potential for different values of the
mass parameter, showing that its form is essentially the
same in the whole range of real values for the mass term,
leading to the screening phase. Furthermore, we test the
approximation forms of all the functions necessary for
computing the potential. Section 3 is reserved for conclu-
sions and discussions. Especially important in the last sec-
tion is the comparison between our result and a similar
computation using Wilson loops, leading to exactly the
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same potential in the case where both procedures are fea-
sible [10].

2 Computation
of the quark–antiquark potential

The partition function of three-dimensional massive QED
in the covariant gauge, in the presence of an external
source Jµ, is given by

Z =
∫

D[ψ, ψ̄, Aµ]δ(∂µA
µ)

× exp
{

i
∫

d3x
[
ψ̄(i∂/ − m − eA/ )ψ

−1
4
F 2

µν +AµJ
µ

]}
, (1)

where Fµν is the field tensor, Fµν = ∂µAν − ∂νAµ.
The bosonised version of the above defined action in

the weak coupling approximation is given by the expres-
sion [11,12]

Z =
∫

DAµδ(∂µA
µ) (2)

× exp
{
i
∫

d3x

{
1
2
AµΠ

µνAν − 1
4
F 2

µν +AµJ
µ + · · ·

}}
,

where the dots stand for non-quadratic terms in the gauge
field Aµ. This result will describe the partition function of
the Maxwell–Chern–Simons [13] theory in the covariant
gauge in the infinite mass limit [7], as we see from the
explicit expression for the self-energy of the gauge field,
Πµν , given by the expression

Πµν = H(p)iεµνρ
pρ

p2 +
[
G(p) + p2](

gµν − pµpν

p2

)
, (3)

where the functions G and H are given by

H(p) = −e2p2

4π

∫ 1

0
dt

m

{m2 − t(1 − t)p2}1/2 , (4)

G(p) = −p2 − e2p2

2π

∫ 1

0
dt

t(1 − t)
{m2 − t(1 − t)p2}1/2 , (5)

and p = (−p2)1/2. We compute the potential as being the
difference between the Hamiltonian with and without a
pair of static external charges separated by a distance L,

2V (L) = Hq − H0 = −(Lq − L0)

= −q

∫
d2xAµδ

µ0{δ(x1 + L/2)δ(x2)

− δ(x1 − L/2)δ(x2)}
= −q{A0(x1 = −L/2, x2 = 0)
− A0(x1 = L/2, x2 = 0)}, (6)

where we have integrated over the two space components
in order to find the potential, and we considered the source

as corresponding to two fixed charges of magnitude q lo-
cated at the points defined by the respective delta func-
tions. Note that Lq(L0) denote the Lagrangians in the
presence (absence) of the charges.

We now consider the equations of motion associated
with the action defined by means of (2). The field equation
in the covariant gauge reads

−H(∂ =
√

−∂2)εµνρ
∂ν

∂2 A
ρ

+ G(∂)
(
gµν − ∂µ∂ν

∂2

)
Aν + Jµ = 0. (7)

Defining the curl of Aµ as

Aµ = −εµνβ∂
νAβ , (8)

the equation of motion can be expressed as

{✷nonloc +m2
nonloc}Aµ = −εµνβ∂

βJν − fnonlocJµ, (9)

where

✷nonloc = G(∂),

m2
nonloc =

H2(∂)
∂2G(∂)

, (10)

fnonloc =
H(∂)
G(∂)

.

In the absence of sources, and in the large m limit [7], it
reproduces the familiar massive mode of Maxwell–Chern–
Simons theory [13]. From (6) it is seen that an expression
for A0 is required to calculate the potential. This is given
in terms of the curl (8) by

A2 = −∂1A0. (11)

The time independent solution for A2 corresponding to
the sources describing static quarks can be obtained from
(9). Using this result with (11) finally yields, after inte-
grating over the angular variables,

A0(t, L) = A0(0, L) = −q2

π

∫ ∞

0

kJ0(kL)

G̃(k) + H̃2(k)
k2G̃(k)

dk. (12)

The integration over the angular variables in the Fourier
transformation led to the Bessel function J0(kL); in the
case where the denominator is given by the familiar result
(i.e. the Feynman propagator, which also appears in the
large mass limit, see [7]) the result of the integration is
just the modified Bessel function [14].

The potential is now found from (6), (9) and (12),
reading

V (L) = − q2

2π

∫ ∞

0

kJ0(kL)

G̃(k) + H̃2(k)
k2G̃(k)

dk, (13)

where the functions G(k) and H(k) are given by the ex-
pressions

G(k) = k2 (14)
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Fig. 1. Potential as a function of the distance for various values
of the mass parameter. The value m = 1 practically coincides
with the asymptotic value m = ∞

+
e2m

4π

[
1 −

(
2m
k

− k

2m

)
arctan

(
k

2m

)]
,

H(k) =
e2mk

2π
arctan

(
k

2m

)
. (15)

The above equation takes a particularly simple form in
the infinite mass limit,

V (L) = − 1
2π

q2

1 + e2

6πm

K0

(
e2

4π
L

)
≡ −q2

ren

2π
K0

(
e2

4π
L

)
.

(16)
This reproduces our earlier results in [7]. The asymptotic
form of the Bessel function signals screening.

For arbitrary mass however, a simple closed form ex-
pression cannot be obtained. We therefore have to use nu-
merical methods. They are presented as follows. We first
plot the function V (L) given in (13) as a function of L
for various values of the mass parameter m. The result
is plotted in Fig. 1. It is immediately obvious that the
screening effect is qualitatively independent of the mass,
and the quantitative dependence extremely small. Indeed,
the graphs are almost bound inside a rather narrow band
defined by the results obtained for m = 0 and m = ∞.

In general, due to the appearance of non-algebraic
functions the expressions appearing in (14) and (15) are
rather clumsy. In [9] simple expressions have been derived
which, according to the authors, give a good approxima-
tion to these functions in the whole range of values of the
parameter. The approximations are

G(k) ≈ k2


1 +

1
16

[
k2 +

(
3πm
4

)2
]−1/2


 , (17)

H(k) ≈ e2mk2

4
(
k2 + π2m2)−1/2

. (18)

We tested this assumption for the computation of the po-
tential, comparing the asymptotic result with the one ob-

tained with the approximations for m = 1000. We re-
peated the procedure for m = 0.1, which shows similar
findings. The result is shown in Fig. 2, indicating that
the approximation agrees remarkably well with the exact
results. We also checked the approximations directly in
Fig. 4. Comparison of the expressions for G and H using
the approximations and the exact result shows that there
is little discrepancy.

The approach to the asymptotes in the computation
of the potential has also been analysed. We have verified
that it is very quick. Indeed, for reasonably low values
of the mass the potential already shows the asymptotic
value. We illustrated this behaviour in the case m = 10 in
Fig. 3, which was done with the exact expressions.

3 Discussion

Here we worked out an approach for obtaining the semi-
classical interquark potential for arbitrary values of the
fermion mass parameter, generalising our previous work
[7], where only the infinite mass approximation was anal-
ysed. In that case, the expression for the effective action
is local, and the interquark potential could be computed
in closed form, showing explicitly that the model lives in
a screening phase. We attempted here to go beyond the
large mass limit. However, the expressions thus obtained
are non-local, and we had to resort to numerical simula-
tions. The results are nevertheless rewarding, especially in
view of the extremely mild dependence upon the fermion
mass, i.e. almost every physical quantity related to the
screening potential is almost independent of the mass, for
0 ≤ m ≤ 1 (we suppose e = 1) and reaches the asymptotic
value already for m of order unit.

The screening obtained for all values of the mass pa-
rameter supports the observations obtained in two-dimen-
sional QCD [4], where the screening phase also prevails
almost universally (see also [2]). This opens up the dis-
cussion for a large number of interesting possibilities. In
particular, it is interesting to stress that the same mech-
anism may work for the non-abelian case in three di-
mensions, since in the large mass limit the effective ac-
tion turns out to be the non-abelian generalization of the
Maxwell–Chern–Simons theory. In an axial gauge, and in
the weak coupling limit, the Maxwell–Chern–Simons ac-
tion coincides with the abelian counterpart, and the same
conclusions are expected. If one dares to speculate that
the mass dependence is as mild as we have obtained in the
above discussion, then all conclusions can be carried over
to the non-abelian case as well, a tantalising result! This
would imply an almost universal screening behaviour for
low dimensional systems. We hope to come back to these
interesting questions in a future work.

The derivation of the potential from the process of
computing the determinant of the Dirac operator is a stan-
dard one [17], being based on perturbation theory. The
fact that the coupling constant has a positive mass di-
mension makes this procedure possible. Nonetheless, we
are aware of the fact that in the large mass case the per-
turbative expansion leads to the best results, as mentioned
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Fig. 2. (Left) Potential function for infinite mass, and for m = 1000 using (17) and (18). (Right) Potential function for m = 0.1
using the exact results (14) and (15) and approximate forms (17) and (18)
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Fig. 3. Comparison between the potential for m = 10 and the
asymptotic result

several times in the conclusion. What we pointed out is
that, at lowest order of perturbation theory the mass term
is irrelevant, as shown in Fig. 1. This is by all means im-
portant, since lowest order perturbation is still valid to fi-
nite mass (we are not talking about the zero mass limit!).
We certainly have to go beyond the quadratic approxi-
mation as a next step. We nevertheless consider the fact
that the mass parameter does not play a fundamental role
in the present calculation, giving a strong indication that
screening may prevail in much more general circumstances
than usually believed. Our computation for zero mass does
not constitute any proof, but is just performed to show a
trend. We do not and cannot believe that the zero mass
limit provides good results, and is only displayed as a bias
towards stabilisation of the screening process. This is in
fact confirmed by the independent computation in [18].

We also tested the approximative formulae (17) and
(18), usually taken as a good approximation within 10%

accuracy. The difference between the potential calculated
using these approximations and the exact results is less
than 10−2, too small to be seen in Fig. 2.

Let us now digress a bit on the infinite and zero mass
limits of the model. In the latter case we have to go beyond
the quadratic approximation, since higher corrections have
to be computed in a gauge theory where further powers
of the external momenta show up in the computation of
the diagrams. One loop fermionic diagrams in gauge the-
ories result in powers of momentum and functions of mo-
mentum over mass, in general f

(
p2/m2

)
. While the limit

p → 0 and m → ∞ is unambiguous, the double limit
p → 0 and m → 0 is not well defined, and depends on the
order in which they are taken. Therefore, a strong infrared
dependence on the mass may invalidate the procedure. No-
tice that the discussion of screening presupposes a large
distance (namely a small momentum) limit, which may
not commute with the zero mass limit. The infinite mass
limit obtained in the quadratic approximation is however
expected to survive even in the non-quadratic regime. We
hope to come back to these points in a future publication.

We finally comment on two important points which
make contact with the existing literature on the prob-
lem of screening and confinement, namely the existence
of monopole solutions [15] and the Wilson loop formula-
tion of the confinement problem [16].

In the first case, we know that for QED3 without
fermions there are monopole solutions, such as described
by e.g. the vector potential Ar = (g/r)ϕ, A0 = Aϕ = 0.
However, we see that the quantum effect described by the
mechanism described following (6) acts here in the same
way so as to make the above result disappear from the
space of solutions. Indeed we can introduce an interaction
similar to (6) in terms of Ar.

The fact that the mechanism in action here is of a
quantum nature, independent of the details of the Chern–
Simons term can also be confirmed from the very recent
paper [18], where the authors showed that even bosonic
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Fig. 4. Function G (left) and H (right) with m = 1, using the exact definitions (14) and (15), and the approximations (17) and
(18)

matter is screened rather than confined in three-dimen-
sional QED.

A further check of our result, rather detailed and fine
from the dynamical point of view has been performed by
K.D. Rothe [10]. TheWilson loop approach is very difficult
to be performed in the arbitrary mass case, but for a large
mass this can be done and the potential can be obtained.
In our case the large mass limit is such that the potential
boils down to an expression in terms of a Bessel function
(16), while the effective Lagrangian is just the Maxwell–
Chern–Simons Lagrangian, as we can easily see from e.g.
(3). The Wilson loop expectation is given by [10]

〈W [C]〉 =
∫

DAµeS+ie
∫

IµAµd3z, (19)

where Iµ defines the charge current at the border of the
Wilson loop. One finds from the quadratic part of the
action the result

〈W{C}〉 = e
e2
2

∫
IµK−1

µν Iν

. (20)

Choose the Wilson loop C to be a square −T/2 ≤ x0 ≤
T/2, −L/2 ≤ x1 ≤ L/2, x2 = 0. The inverse propagator
K−1

µν is given in terms of the function∆(x,M) (whereM is
the Chern–Simons mass as we have computed it) obeying
the Klein–Gordon equation. Its computation leads to the
result (16) for the potential, fully confirming, via the Wil-
son loop procedure, the correctness of the result. Further
1/m corrections can be computed accordingly.
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